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Fig. 3. (a) Normalized guide wavelength. (b) Characteristic impedance.
g = sh = 10mm; 4 = 02 mm; b = 0.7 mm; = b — a
@G) ¢ W = 0.00; (i) /W = 0.02; (iii) ¢/ W = 0.04; (iv) /W = 0.10.

These numerical calculation were carried out by the electronic
computer FACOM 230-75. The calculation time was about 6 s
for the wavelength and 0.5 s for the characteristic impedance.
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Analytical IC Metal-Line Capacitance Formulas
W. H. CHANG, MEMBER, IEEE

Abstract—In semiconductor IC technology, capacitances formed by
the multilevel interconnection metal lines usually dominate circuit
performance. However, for lack of accurate formulas, a numerical
method usually has to be used to determine these capacitances. Two
analytical capacitance formulas were derived using approximate con-
formal mapping techniques. One formula gives the capacitance of a
finite-thickness metal line over a conducting ground plane, or over a
silicon surface. The other formula gives the capacitance of the same
metal line, but with an additional conducting metal line over it. The
formulas are most accurate for metal lines whose width exceeds the di-
electric thickness; accuracy increases with linewidth. They are accurate
to 1 percent for a metal line whose width is comparable to the dielectric
thickness. With these simple formulas, statistical distribution of the
metal-line capacitances can be easily determined in a few seconds of
computer time. '

I. INTRODUCTION

In semiconductor integrated-circuit technology, capacitances
formed by the metal interconnection lines usually dominate the
circuit performance of the chip. It is therefore important for a
circuit designer to determine metal-line capacitances accurately.
Since the basic structure is similar to that of a microwave strip-
line, the structure has been well analyzed [1]-[8]. However,
most of the treatment is either limited to a metal line of infini-
tesimal thickness, or a complicated numerical method is used to
obtain the capacitances. The numierical method requires a
computer and long computation time. Using conformal mapping
techniques, accurate analytical capacitance formulas have been
derived for a single rectangular metal line. Two analytical
capacitance formulas are given: one gives the capacitance of a
rectangular metal line over a conducting ground plane; the other
gives the capacitance of the same metal line with two conducting
ground planes, one above it and the other below it.

II. A MEeTAL LINE OVER A GROUND PLANE

Fig. 1 shows a rectangular metal line above a ground plane.
The metal has a width W, thickness ¢, and is separated from the
ground plane by the distance 4. The ground plane may be a
silicon surface operating in an accumulation région. Because
of the symmetry of the structure, only one-half of the structure
needs to be considered. The half metal line BCDE is extended
to infinity at 4 and F in Fig. 2(a) to apply conformal mapping
techniques and get a simpler formula. Boundary conditions are
that the metal be at unity voltage, and ground plane be at 0
voltage, and the normal electric field vanishes along the lines
MB and EKG. The Schwarz-Christoffel transformation (2)

nz _p+1 -1 p — 1 R
R tanh™ R + (W) (1__‘}5)
'‘Rp'/? — 1
+ In | ———r0 1
) (Rp”2 + 1 0
. 1/2 : A :
R = (w + 1) @)
w+p ‘
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A metal line above a ground plane.
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Fig. 2. Transformations for Fig. 1.

2B -1 + V(B2 — 1)2 — 1
1+ t/h

3)
C))

transforms the Z plane in Fig. 2(a) into the W plane in Fig. 2(b).
Another transformation

1) =
B

il

2 = 1jzln [ii_w(“_Jf_‘Z)_] 5)
ad + w(l + b)
d=20)r, + 1/r)"? (6).
b= ﬁ_‘_ﬁ )
Y, + ¥,
a=al + 5> — b+ V(1 - bH)[a* — (1 — bx)?] (8)
a = prpld

transforms the region to the right of MBCDEKGH in the W
plane into a region interior to and bounded by an almost-
parallel plate in the Z plane.

Since the structure is an almost-parallel plate, the capacitance
can be approximated by that of a parallel plate as

B ala + b) — 1

Cle ~ BE = l/nlnm
% Unln [rfr, + V(ra/r)® — 1] ©
x 1/ In 2ry/r,) (10)
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TABLE 1
COMPARISON BETWEEN THE CAPACITANCES CALCULATED BY (24) AND BY
THE NUMERICAL METHOD [7]

¢ =C/e CZ=C/e
W/h t/h (formula) (numerical) (€,-€))/G,
.12 0.318 3.552 3.591 ~1.1%
2.01 0.485 4.762 4.793 ~0.6%
2.52 0.318 5.227 5.2642 ~0.3%
2.72 0.802 5.789 '5.815 -0.4%
3.18 0.936 6.371 6.394 ~0.4%
3.63 0.802 6.806 6.820 -0.2%
3.68 0.485 6.662 6.661 <0.057
3.79 1.116 7.136 7.159 ~0.3%
4.24 0.936 '7.542 7.544 <0.05%
5.44 1.200 8.961 8.978 -0.2%
6.36 0.802 9.760 9.754 +0.1%
7.42 0.936 10.955 10.935 +0.2%
8.21 1.805 12.122 12.140 -0.1%
9.85 1.805 13.842 13.828 +0.1%
11.90 1.453 15.855 15.847 +0.1%
14.78 1.805 18.951 18.974 $0.1%
22,22 4.070 27.074 27,077 <0.05%
58.25 7.113 63.940 63.943 <0.05%

where ¢ is the permittivity of the dielectric. Equation (9) is
obtained by assuming that r, = r,” (b = 0) and (10) for r, > r,.
The total capacitance of a rectangular metal line over a conduct-
ing ground plane is twice that of (10), so

Cle = an

Z1 2
- n 2r,/r,.

Since r, is much smaller and #, is much larger than 1, r, and #,
can be approximated by the iteration method.

nr,x —1 - wo_p + 1tanh L(p~ 4%
2h
~wm2=!
4p
~ p+1
rb~ﬂ+55172—1nA (13)
n = p'’? LA b PR W,
2h 2pY2 | p—1

— 2tanh™! p‘1’2} 14)

A = larger value, 5 or p.

(15)

Based on (11)-(15) the capacitances are obtained and compared
with the results obtained by the numerical method (7). The
errors are within 1 percent if W/h Z 1. The comparison is listed
in Table I. The formula is more accurate for a thicker metal line.
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Fig. 3. Rectangular metal line with two conducting ground planes.

III. MEeTAL LINE wiTH Two GROUND PLANES

Fig. 3 shows a rectangular metal line with two conducting
ground planes, one above it and the other below it. The illustra-
tion shows an approximate structure for a much wider second
metal line lying above the first metal line. The metal line is W
in width, ¢ in thickness, and is separated from the ground planes
by distances 4 and 4. One-half of Fig. 3 is reproduced in Fig.
4(a). The boundary conditions are that the ground planes be at
0 V, the metal be at unity voltage, and the normal electric field
be vanished along lines MPB and EQG. To apply conformal
mapping techniques and get a simpler formula, the metal is
extended to 4 and Fat — co. The differential form of the Schwarz—
Christoffel transformation is

‘_{i 4 (W + 1)1/2(w + p)1/2
dw ww - q)

16

After integration is carried out, the following boundary
conditions

z=jit+ h), w= —p
z = jh, w= —1
z = —00, w=0
z= 'oo, w=gq 7
are substituted to obtain the transformation,
T2 _ gtanh~t (2T OO D ytanh~t [P+ 1
2h 1+ g)w + p) w+p
_ taph-! [ ¥t P (18)
p(w + 1)
where
_h+d+t
T Th
_4
"= h
_Z
y4 72
g=30 - ¥ -1+ V@ -y -1 -4’1 (9

The results can be checked by differentiating (18). The capac-
itance of the structures shown in Fig. 4(b) is easily found from
Fig. 4(c) to be

Cle = 1/n1n Ry/R,. (20)

Since the capacitance of the structure shown in Fig. 3 is twice
that of Fig. 4, the total capacitance of a rectangular metal line
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Fig. 4. Transformations for Fig. 3.

TABLE 11
COMPARISON BETWEEN THE CAPACITANCES CALCULATED BY (25) AND BY
THE NUMERICAL METHOD [7]

Cle Cle %
w/h t/h d/h W/d (formula) (numerical) difference
2.765 0.668 2.838 0.974 8.052 8.036 +0.2%
2.725 0.795 3.233 0.843 7.616 7.611 +0.1%
2.725 0.795 4.119 0.662 6.792 6.777 +0.2%
2,725 0.795 5.813 0.469 6.285 6.255 +0.5%
2.725 0.795 6.698 0.407 6.183 6.139 +0.7%
5.069 0.668 2.838 1.786 12.325 c12.279 +0.4%
10.490 3.059 23.147 0.453 15.140 15.059 +0.5%
10.490 3.059 19.738 0.531 15.213 15.175 +0.3%
10.490 3.059 13.217 0.794 15.619 15.638 -0.1%
10.490 3.059 9.808 1.070 16.316 16.333 -0.1%
58.252 7.152 37.573 1.012 .65.169 65.102 +0.1%

- with two conducting ground planes is

Cle = 2/x In Ry/R,. @1

The parameters R, and Ry can be obtained approximately by
Taylor series expansion. The results are

InR, ~ —aW/2h — 20 tanh™ V(p + q)[p( + 9)]
+ 2y tanh~!p~Y2 4 In [4p/(p — D] (22)
In Ry ~ 7y~ {nW/2h + 2a tanh~ V(1 + @)/(p + q)

+ yIn [(p — 1)/4] = 2tanh™! p~1/2}. (23)

The capacitance calculated from (21)-(23) is compared with
that calculated by numerical method [7], as shown in Table 1I.
The errors are within 1 percent for W/h = 0.5, and d/h = 0.5,
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. The capacitance of a rectangular metal line over a conducting
ground plane, for W/h 2 1, s

C = 2¢/n In 2R,/R,
InR, = —1 — aW/2h — [(p + 1)/p¥/?] tanh~1 p=1/2
~ In [(p — 1)/4p]
Ry=n+ [(p + D/2p'?]InA

n = p2@ZW2h + [(p + D2p"*][1 + In 4/(p — D]
— 2tanh~1 p~1/2}
A = larger value, # or p

p=2B>—1++V2B> = 1) - 1

B=1+ th 24
The accuracy of (24) is about 1 percent when Wih 2z 1.
The capacitance of a rectangular metal line with two con-

ducting. ground planes, for W/h = 0.5, d/h = 0.5, is

Cle = 2/n In Ry/R,
InR, = —nW/2h — 2 tanh~1 N + 9 + )
+ 2ytanh~ p~Y2 & Indp/(p — 1)
In Ry = y={xW/2h + 2a tanh=* V(I + /p + )
+ yIn(p — 1)/4 — 2 tanh~! p~1/2}
a=(+d+ t)h
y = dlh
p = q*

g=13[® -9 -1+ V@ -y = 1) - 42 25

The errors are less than 1 percent. Both formulas are motre
accurate for a wider and/or a thicker metal line. Once the capac-
itance is found, the characteristic impedance of the composite
transmission line is easily obtained. Aside from a constant, the
characteristic impedance is the inverse of the capacitance.
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Equivalent Circuit of a Narrow Axial Strip in Waveguide

KAI CHANG, STUDENT MEMBER, IEEE, AND
PETER J. KHAN, MEMBER, IEEE

Abstract—A theoretical determination is made of the two-port equiv-
alent circuit of a narrow strip located axially in a rectangular waveguide
such that it extends partially or completely across the waveguide narrow
dimension. The analysis is based upon derivation of a variational expres-
sion for a field quantity from which can be determined the reflection co-
efficient and the equivalent-circuit parameters. Experimental input
susceptance values agree closely with the theory. The analysis shows
that the T-equivalent network of a nontouching strip has a series-resonant
shunt circuit. This element has application in filter and impedance-
transforming networks, in planar circuits, and in fin-line structures.

I. INTRODUCTION

This short paper presents a theoretical determination, with
experimental verification, of the equivalent circuit of a narrow
infinitesimally thin perfectly conducting strip which is partially
or completely inserted in a rectangular waveguide in such a
manner that the strip surface is parallel to the narrow waveguide
wall.

Konishi et al. [1]-[3] have developed a method for the
design of planar circuits, by which the circuit elements are
located on a metal sheet which is inserted axially into a wave-
guide; its advantages include low cost and ease of mass produc-
tion. Meijer [4]-[7] has advocated fin line, in which metal fins
printed on a dielectric substrate bridge the broad walls of a
rectangular waveguide, as a propagating structure for millimeter-
wave integrated circuits. The geometry considered in this short
paper belongs to the general form defined by those papers..
Although the analysis presented here is restricted to narrow
strips, it is applicable to the design of bandpass filters, diode
mounts, and tuning elements of the form described by Konishi
et al. [2], [3]. '

The narrow axial nontouching thin strip has not previously
been subjected to theoretical analysis. Konishi er al. [2], [3]
used a Rayleigh-Ritz variational technique to obtain an equiv-
alent circuit for a uniform strip which extends across the entire
waveguide height. Their method requires knowledge of the modes
in the two sections of the waveguide bifurcated by the strip; thus
it is not readily applicable to the nontouching strip.

The approach used here is based upon the variational method
used previously by the present authors for the analysis of a thin
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