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Fig. 3. (a) Normalized guide wavelength. (b) Characteristic impedance.
.%=20 ;h=l:Omm; A= 0.2mm; b=0.7mm; W= b—a
(i) t/lV = 0.00; (n) t/JV = 0.02; (iii) t/?V = 0.04; (iv) t/JV = 0.10.

These numerical calculation were carried out by the electronic

computer FACOM 230-75. The calculation time was about 6 s

for the wavelength and 0.5 s for the characteristic impedance.
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Analytical IC Metal-Line Capacitance Formulas

w. H. CHANG, MBMBER,IEEE

Abstract—In semiconductor IC technology, capacitance formed by
the medtilevel interconnection metal lines usually dominate circuit

performance. However, for lack of accurate formulas,, a numerical
method usually has to be used to determine these capacitances. Two

analytical capacitance formulas were derived using approximate con.
formal mapping techniques. One formula gives the capacitance of a

finite-thickness metal line over a conducting ground plane, or over a

silicon surface. The other formula gives the capacitance of the same

metal line, but with an additional conducting metal line over it. The

formulas are most accurate for metal lines whose width exceeds the di-
electric thickness; accuracy increases with Iinewidtb. They are accurate
to 1 percent for a metal line whose width is comparable to the dielectric

thickness. With these simple formulas, statistical distribution of the
metal-line capacitances can be easily determined in a few seconds of

computer time.

I. INTRODUCTION

In semiconductor integrated-circuit technology, capacitances

formed by the metal interconnection lines usually dominate the

circuit performance of the chip. It is therefore important for a

circuit designer to determine metal-line capacitances accurately.

Since the basic structure is similar to that of a microwave strip-

Iine, the structure has been well analyzed [1]- [8 ]. However,

most of the treatment is either limited to a metal line of infini-

tesimal thickness, or a complicated numerical method is used to

obtain the capacitances. The numerical method requires a

computer and long computation time. Using conformal mapping

techniques, awtrate analytical capacitance formulas have been

derived for a single rectangular metal line. Two analytical

capacitance formulas are given: one gives the capacitance of a

rectangular metal line over a conducting ground plane; the other

gives the capacitance of the same metal line with two conducting

ground planes, one above it and the other below it.

II. A METAZ., LmE OVER A GROUND PLANE

Fig. 1 shows a rectangular metal line above a ground plane.

The metal has a width W, thickness t,and is separated from the

ground plane by the distance h. The ground plane may be a

silicon surface operating in an accumulation region, Because

of the symmetry of the structure, only one-half of the structure

needs to be considered. The half metal line BCDE is extended

to intinity at A and Fin Fig. 2(a) to apply conformal mapping

techniques and get a simpler formula. Boundary conditions are

that the metal be at unity voltage, and ground plane be at O

voltage, and the normal electric field vanishes along the lines

MB and EKG. The Schwarz-Christo ffel transformation (2)

rcz p+l..—
h p1i2 ‘anh-” + r>) (*)

()W+ll’2
R= —

W+p
(2)
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Fig. 1. A metal line above a ground plane.
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Transformations for Fig. 1.

1 + ~(2B2 – 1)2 – 1 (3)

t/h (4)

transforms the Z plane in Fig. 2(a) into the W plane in Fig. 2(b).

Another transformation

[

d+w(a+b)
z’ = I/z In

1

(5)
ad + w(l + b)

d = 2(1/ra + I/r:)-l (6)

b=-
ro’ + r.

(7)

a = a(l + b2) – b + J(1 – b2)[a2 – (1 – ba)2] (8)

a = r~/d

transforms the region to the right of MBCDEKGH in the W

plane into a region interior to and bounded by an almost-

parallel plate in the Z plane.

Since the structure is an almost-parallel plate, the capacitance

can be approximated by that of a parallel plate as

c/& z
a(a+b)–1

YE = l/z in
a–cx(l+b)

% 1/72 in [r,/r. + ~(rb/r.)2 - 1] (9)

z l/rr in (2rl,/ra) (lo)

TABLE I
COMPARISONBETWEENTHE CAPACITANCESCALCULATED 13Y(24) AND BY

THE NuknmIcM. METHOD [7]

L .

W/h tfh (formula) (numerical)
(cl-c2)/c2

1.12

2.01

2,52

2.72

3.18

3.63

3.68

3.79

4.24

5.44

6.36

7.42

8.21

9.85

11.90

14.78

22.22

58.25

0.318

0.485

0.318

0.802

0.936

0.802

0.485

1.116

0.936

1.200

0.802

0.936

1.805

1.805

1.453

1.805

4.070

7.113

3.552 3.591 -1.1%

4.762 4.793 -.0.6%

5.227 5.242 -0.3%

5.789 5.815 -0.4%

6.371 6.394 -0.4%

6.806 6.820 -0.2%

6.662 6.661 <0.05%

7.136 7.159 -o. 3%

‘7.542 7.544 <0.05%

8.961 8.978 -0.2%

9.76o 9.754 .+0. 1%

10.955 10.935 .+0.2%

12.122 12.140 -o. 1%

13.842 13.828 .+0.1%

15.855 15.847 +0.1%

18.951 18.974 +0. 1%

27.074 27.077 <0. 05%

63.94o 63.943 <0.05%

where e is the permittivity of the dielectric. Equation (9) is

obtained by assuming that ra = ra’ (b = O) and (10) for rb >> ra.

The total capacitance of a rectangular metal line over a conduct-

ing ground plane is twice that of (10), so

CIE = ~ in 2rb/ra. (11)

Since r. is much smaller and rb is much larger than 1, r. and r~

can be approxirndted by the iteration method.

in r. % -1- ~ -‘~ tanh-l (p-’”)
P

_ln P–l
— (12)

4p

P+lln A
rbz~+—

2P112
(13)

{

~ = Pllz ~w

[

4

1

P+ll+ln —
~+—

2P112 p–l

_ 2 tanh-l p-1/2 ) (14)

A = larger value, v or p. (15)

Based on (11)-(15) the capacitances are obtained and compared

with the results obtained by the numerical method (7). The

errors are within 1 percent if W//r > 1. The comparison is listed

in Table I. The formula is more accurate for a thicker metal line.
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Fig.3. Rectan~lar metal line with twoconducting ground planes.

III. METAL. Lmm wmw Two GROUND PLANES

Fig. 3 shows a rectangular metal line with two conducting

ground planes, one above it and the other below it. The illustra-

tion shows an approximate structure for a much wider second

metal line lying above the first metal line. The metal line is W

in width, tin thickness, and is separated from the ground planes

by distances h and d. One-half of Fig. 3 is reproduced in Fig.

4(a). The boundary conditions are that the ground planes be at

O V, the metal be at unity voltage, and the normal electric field

be vanished along lines iWPB and EQG. To apply con formal

mapping techniques and get a simpler formula, the metal is

extended to A and Fat — co. The differential form of the Schwarz-

Christoffel transformation is

dz ~ (w + I)I/’(w + p)’fz
—=
dw W(w – q) “

(16)

After integration is carried out, the following boundary

conditions

z = j(t+ /2), ~=—p

z = jr’, w= -1

Z=eo, W=q (17)

are substituted to obtain the transformation,

?’tZ
— = a tanh-l
2h m-’tanh-lllz

– tanh- 1

J
w + p (18)

p(w + 1)

where

q = *[a2 – yz – 1 + d(a2 – y2 – 1)2 – 4y2]. (19)

The results can be checked by differentiating (18). The capac-

itance of the structures shown in Fig. 4(b) is easily found from

Fig. 4(c) to be

C/e = 1In in R~/R~. (20)

Since the capacitance of the structure shown in Fig. 3 is twice

that of Fig. 4, the total capacitance of a rectangular metal line

;SEEiiE2
V=o

,-:p’a”e
-rB -p -1 -r~

GX(c)z’-p+m rA
o

B

Fig. 4. Transformation for Fig. 3.

TABLE II
COmpariSOn BETWEENTHE CAPACITANCESCALCULATED BY (25) AND BY

THE NUMERICAL METHOD [7]

P/. Cl. “1
Wlh tlh dth wtd ikkd~) i;tkicd) difference

2.765 0.66, 2.a3s 0.974 8.052 8.036 +0.2%

2.725 0.795 3.233 0.843 7.616 7.611 +0.1%

2.725 0.795 4.119 0.662 6.792 6.777 +0.2%

2.725 0.795 5.813 0.469 6.2a5 6.255 +0.5%

2.725 0.795 6.698 0.407 6.183 6.139 +0. 7%

5.069 0.668 2.838 1.786 12.325 12.279 +0.4%

10.490 3.059 23.147 0.453 15.140 15.059 +0.5%

10.490 3.059 19.738 0.531 15.213 15.175 +0.3%

10.490 3.059 13.217 0.794 15.619 15.638 -o. 1%

10.490 3.059 9.808 1.070 16.316 16.333 -0.1%

58.252 7.152 37.573 1.012 65.169 65.102 +0.1%

with two conducting ground planes is

C/E = 2/n in R~/RA. (21)

The parameters RA and R~ can be obtained approximately by

Taylor series expansion. The results are

in RA % – zW/2h – 2a tanh- 1 d(p + q)[p(l + q)]

+ >i tanh-l p- 1/2 + In [4p/(p – 1)] (22)

lnRB%y ‘1{7rW/2h + 2a tanh-’ J(1 + q)/(p + q)

+ yin [(p – 1)/4] – 2 tanh-l P-112}. (23)

The capacitance calculated from (21)-(23) is compared with

that calculated by numerical method [7], as shown in Table II.

The errors are within 1 percent for W/h > 0.5, and d/h > 0.5.
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IV. SUMMARY

The capacitance of a rectangular metal line over a conducting

ground plane, for W/h ~ 1, is

in Ra = – 1 – rtW/2h – [(p + 1)/plf2] tanh-l p-1/2

- in [(p - 1)/4p]

Rb = ~ + [(p + 1)/2p112] in A

V = P1’2{7rW/2h + [(p + 1)/2p1’2] [1 + in 4/(P – 1)]

— 2 tanh- 1 p- 1/2 }

A = larger value, q or ~

p=2B2–1+ J(2B2–1)2–1

B=l+ t/h. (24)

The accuracy of (24) is about 1 percent when W/h ~ 1.

The capacitance of a rectangular metal line with two con-

ducting ground planes, for W/h z 0.5, d/h > 0.5, is

Cl& = 2/rL In RB/R~

h-sRA = – rrW/2h – 2ct tanh-l J(p + q)/p(l + q)

+ 2Y tanh-l p-i/2 + in 4p/(p – 1)

in R~ = y-l{rrw/2h + 2a tanh-l J(l + q)/(p + q)

+ y In (p – 1)/~ – 2 tanh-i p-112)

a=(lt+d+t)/h

q = ~[a2 – yz – 1 + J(a2 – y2 - 1)2 – 4y2]. (25)

The errors are less than 1 percent. Both formulas are more

accurate for a wider and/or a thicker metal line, Once the capac-

itance is found, the characteristic impedance of the composite

transmission line is easily obtained. Aside from a constant, the

characteristic impedance is the inverse of the capacitance.
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Equivalent Circ~t of a Narrow Axial Strip in Waveguide

KAI CHANG, STUDENT MEMBER,IEEE, AND
PETER J. KHAN, MEMBER,IEEE

Abstract—A theoretical determination is made of the two-port equiv-
alent circuit of a narrow strip located axially in a rectangular wavegrside
such that it extends partially or completely across the wameguide narrow
dimension. The analysis is based upon derivation of a variational expres-
sion for a field quantity from which can be determined the reflection co-
efficient and the equivalent-circuit parameters. Experimental input

snsceptnttce values agree closely with the theory. The analysis shows

that the T-equivalent network of a nontouching strip has a series-resonant

shunt circuit. This element has application in filter and impedance-

transforming networks, in planar circuits, and in fin-line strnctnres.

I. INTRODUCTION

This short paper presents a theoretical determination, with

experimental verification, of the equivalent circuit of a narrow

infinitesimally thin perfectly conducting strip which is partially

or completely inserted in a rectangular waveguide in such a

manner that the strip surface is parallel to the narrow waveguide

wall.

Konishi et al. [1 ]–[3 ] have developed a method for the

design of planar circuits, by which the circuit elements are

located on a metal sheet which is inserted axially into a wave-

guide; its advantages include low cost and ease of mass produc-

tion. Meier [4]– [7] has advocated fin line, in which metal fins

printed on a dielectric substrate bridge the broad walls of a

rectangular waveguide, as a propagating structure for millimeter-

wave integrated circuits. The geometry considered. in this short

paper belongs to the general form defined by those papers.,

Although the analysis presented here is restricted to narrow

strips, it is applicable to the design of bandpass filters, diode

mounts, and tuning elements of the form described by Konishi

et az, [2], [3].

The narrow axial nontouching thin strip has not previously

been subjected to theoretical analysis. Konishi et al. [2], [3]

used a Rayleigh–Ritz variational technique to obtain an equiv-

alent circuit for a uniform strip which extends across the entire

waveguide height. Their method requires knowledge of the modes

in the two sections of the waveguide bifurcated by the strip; thus

it is not readily applicable to the nontouching strip.

The approach used here is based upon the variational method

used previously by the present authors for the analysis of a thin
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